Perform efficient similarity searches with MongoDB Atlas Vector Search.
Store embeddings dynamically across multiple databases and collections.
Ingest documents in bulk with automatic retries.
Ensure vector indexes are created and optimized automatically.
Combine vector and metadata filtering for precise results.
Use a simple CLI tool to set up and interact with MongoDB-RAG.
1️⃣ Install the package:
npm install mongodb-rag dotenv
2️⃣ Initialize the configuration:
npx mongodb-rag init
3️⃣ Create a vector index:
npx mongodb-rag create-index
4️⃣ Start using the library:
import { MongoRAG } from 'mongodb-rag'; const rag = new MongoRAG({ mongoUrl: process.env.MONGODB_URI });
npx mongodb-rag test-connection
npx mongodb-rag ingest
npx mongodb-rag search "What is vector search?"
MongoDB-RAG © 2025. All rights reserved.